
IoT Moving from Hobbies to the Real World (an embedded view)

IoT - Definition

Software Stack that we are familiar with

- Linux distributions customized for Raspberry Pi:
 - Raspbian (Debian GNU/Linux for Raspberry Pi).
 - Raspbmc (XBMC for Raspberry Pi).
 - Arch Linux ARM.
 - Many more distributions in development.
- Python, Ruby, C, Bash Shell available by default.
- Most software from Debian ecosystem is available for download and installation on Raspbian.

```
Javascript –
johnny-five.io
cylon.js
```

. . .

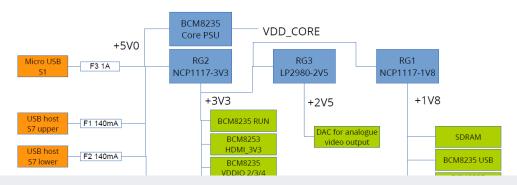
Open hardware platforms for IoT

Some Quick Examples...

Do you recognize this devices? See how they can be easily connected to the new Internet of Things

Micro-Controller Unit's

Accelerate. Innovate. Differentiate.



http://embedded-computing.com/27279-an-iot-development-kit-comparison/#

Raspberry Pi Architecture

Raspberry Pi is a General Purpose Computer

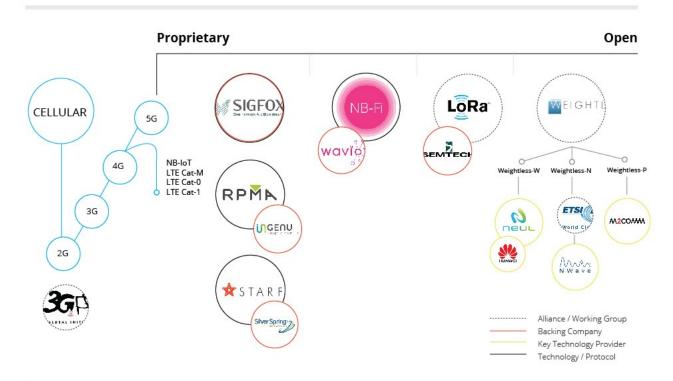
23 February 2014 http://www.martin-jones.com/

MCU – Comparison parameters

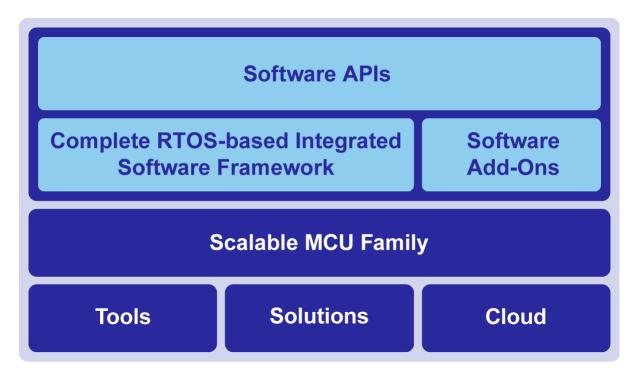
- Compute
- Memory
- I/O Peripherals
- Sensors
- Wireless
- Tools
- Cloud Support
- Cost

Platform

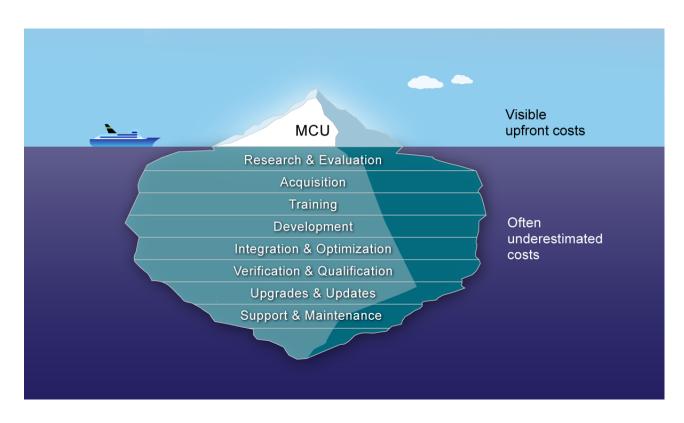
Analytics

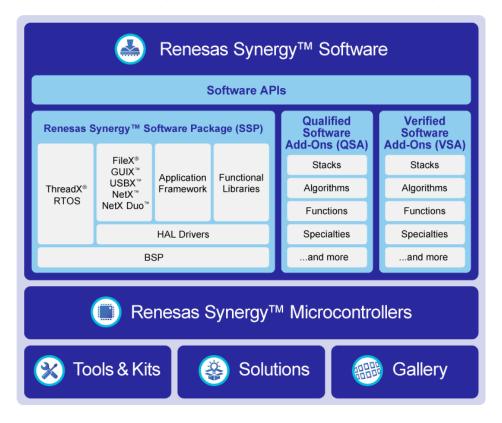

Application

		Compute	Memory	I/O & Peripherals	Wineless	Tools	Cloud	Cost
http://embedded-computing.cd development-kit-comparison/#	Atmel SAM W25 Xplained Pro ²	48 MHz ARM Cortex-M0+ MCU	• 8 MB Serial Flash	Atmel Data Gateway Interface GPIO IZC UART USB SPI Virtual COM	• 802.11 b/g/n Wi-Fi	Atmel Studio Embedded Debugger	Arrayent Exosite Proximetry PubNub wot.io Zatar	\$42.65
	Imagination Creator Ci40 ³	550 MHz dual-core, dual-threaded MIPS32 InterAptiv CPU	• 256 MB DDR3 SDRAM • 512 MB NAND Flash	• ADC • EJTAG • GPIO • I2C • mikroBUS • PWM • Raspberry Pi B+ • SPI • UART	2x2 802.11 b/g/n/ac Wi-Fi 802.15.4 (6LoWPAN) Bluetooth 4.1	• FlowCloud SDK	FlowCloud	\$52
	Marvell EZ-Connect MW302 ⁴	200 MHz Cortex-M4F MCU	• 512 KB SRAM • External QSPI Flash	ADC DAC GPIO I2C I2S JTAG PWM SPI UART USB 2.0	• 1x1 802.11 b/g/n Wi-Fi	Marvell AWS IoT Starter SDK Eclipse ARM GNU Compiler/ Debugger OpenOCD	AWS IoT Arrayent Ayla Evrything Xively	\$49
		80 MHz ARM Cortex-M4 MCU n-iot-	• 256 KB RAM • External SPI Flash • ROM Bootl- oader • 32-chan- nel µDMA	• ADC • 12C • 12S • Parallel Camera • PWM • SDMMC • SPI • UART	• 802.11 b/g/n Wi-Fi	Code Composer Studio GNU Compiler/De bugger OpenOCD IAR Embedded Workbench	AWS IoT Arrayent Exosite IBM IoT Cloud Xively	\$29.99
development-kit-comparison/#				·		·		


A bit more on wireless support

LPWAN IoT Market


(Low-Power Wide Area Network)


Renesas Stack (as an example) - Yesterday

Beyond the silicon...

Renesas Synergy (as an example) - Today

Approach to get into real-world

Proof of Concept

- Cost doesn't matter
- Raspberry Pi, Arduino or anything at your disposal

Prototype

- Go as close to product as possible (98% is good)
- Usability designs are important (in B2B, serviceability)

Build

 Endless nights, and masala chai

Benchmark

- Understand your key implementation parameters
- Compare and contrast technical considerations

Cycle

 Go back with learnings until remaining 2% is perfect

solution cost

Thank you

Choose your platform

